Fluid Maintenance Requirement Questions

Given the weight of a child or infant, calculate the necessary amount of fluid per day. Different hospitals may have different policies, but for learning how to perform these pediatric dosage calculations, the following commonly used table of fluid requirements may be used.

Weight Range	Required Daily Fluid
$0-10 \mathrm{~kg}$	100 mL per $\mathbf{~ k g}$
$10-20 \mathrm{~kg}$	$1,000 \mathrm{~mL}+50 \mathrm{~mL}$ per each $\mathbf{~ k g ~ a b o v e ~} \mathbf{1 0} \mathbf{~ k g}$
$20-70 \mathrm{~kg}$	$1,500 \mathrm{~mL}+\mathbf{2 0} \mathrm{mL}$ per each $\mathbf{~ k g ~ a b o v e ~} \mathbf{2 0} \mathbf{~ k g}$
Over 70 kg	$2,500 \mathrm{~mL}$ (adult requirement)

Example: An infant weighs 4 kg . What is the required amount of fluid per day in mL ?

$0-10 \mathrm{~kg}$	100 mL per kg

- $4 \mathrm{~kg} \times 100 \mathrm{~mL} / \mathrm{kg}=\mathbf{4 0 0} \mathbf{~ m L}$

Example: An infant weighs 30.8 lb . What is the required IV flow rate in $\mathrm{mL} / \mathrm{hr}$ to maintain proper fluid levels?
Convert 30.8 lb to kg.

- $\mathrm{lb} \rightarrow \mathrm{kg} \quad(\div$ by 2.2)
- $30.8 \mathrm{lb} \div 2.2=14 \mathrm{~kg}$

$10-20 \mathrm{~kg}$	$1,000 \mathrm{~mL}+50 \mathrm{~mL}$ per each kg above 10 kg

- $14 \mathrm{~kg}-10 \mathrm{~kg}=4 \mathrm{~kg}$ (There are 4 kg over 10 kg).
- $1,000 \mathrm{~mL}+(50 \mathrm{~mL} / \mathrm{kg} \times 4 \mathrm{~kg})=1,200 \mathrm{~mL} /$ day
- This is now an ordinary IV Flow Rate - mL Rate Question. The required volume is $1,200 \mathrm{~mL}$ and the time is one day.
$\frac{\text { Volume }(\mathrm{mL})}{\text { Time }(\mathrm{hr})}=\mathrm{Y}($ Flow Rate in $\mathrm{mL} / \mathrm{hr})$

There are 24 hours in one day.

- 1 day $\times 24=24 \mathrm{hr}$

$$
\frac{1,200 \mathrm{~mL}}{24 \mathrm{hr}}=\mathbf{5 0} \mathbf{~ m L} / \mathbf{h r}
$$

\qquad

IV Fluids Calculations

Administering fluids/medications via an infusion pump

- How do I use the pump to deliver the right dose?
- Each brand of infusion pump has specific tubing, filling volumes, filters, and other accessories.

A problem indicates that a medication or fluid is to be given via an infusion pump. Even though the problem may state the tubing that is specific to the pump has a "drip factor of $15 \mathrm{gtts} / \mathrm{ml}$ or $20 \mathrm{gtts} / \mathrm{ml}$ ", it will still be delivered the equivalent to $60 \mathrm{gtts} / \mathrm{ml}$ if it is placed on the pump. Remember when the physician orders $x \mathrm{ml} / \mathrm{hr}$ or you calculate $x \mathrm{ml}$ per hour, that is essentially what you dial into the IV pump.

1. Question:

The doctor writes an order for D_{5} NS to run at $90 \mathrm{cc} / \mathrm{hr}$. The packaging for the IV tubing indicates that the drip factor of the tubing is $15 \mathrm{gtt} / \mathrm{cc}$. Hospital policy states that all fluids are placed on a pump. How will the nurse set the infusion pump?

Critical information:

- Doctor's order of $90 \mathrm{ml} / \mathrm{hr}$
- Use of an infusion pump.

Extraneous information for calculation:

- Drip factor of the tubing.

Answer: \qquad $\mathrm{ml} / \mathrm{hr}$

2. Question:

Order: Run current IV fluids at $175 \mathrm{ml} / \mathrm{hr}$ for 2 hours. How much total volume to give?
Critical information:
Use the space below to show your solution/s.

- Volume $=175 \mathrm{ml}$

Answer: \qquad ml

3. Calculating Hours Manually:

Determining IV infusion rates when pumps are not available.
The DRIP FACTOR is $\mathbf{1 5} \mathbf{~ g t t / m l}$.

Calculate the DRIP RATE manually in the following examples:
Use the space below to show your solution/s.
gtt/min 1. Administer 500cc for 4 hours.
gtt/min 2. Administer 700 cc for 3 hours.
\qquad
\qquad
gtt/min 3. Administer 100 cc for 1 hour.
gtt/min 4. Administer 250 cc for 2 hours.
gtt/min 5. Administer 600 cc for 7 hours.

Formula $=\underline{\text { Volume } \times \text { Drip Factor }}$ Time

Important Reminder: Don't forget to convert hours to minutes.

Use the space below to show your solution/s.

4. Calculating Hours via Infusion Pump:

The nurse makes rounds and notes that the current IV bag contains approximately 450 ml . The IV flow rate is $150 \mathrm{ml} / \mathrm{hr}$. How long will it be before the nurse must hang a new bag?

Critical information:

- Volume $=450 \mathrm{ml}$
- Flow rate $=150 \mathrm{ml} / \mathrm{hr}$

$\frac{450 \mathrm{ml}}{150 \mathrm{ml} / \mathrm{hr}}$	$=$.
$450 / 150$	$=$	3 hr

Use this space to show your solution/s. >>>
hr(s) 1 . IV flow rate is $200 / \mathrm{ml}$. For how long will it infuse if IV bag contains 1000 ml ?
$\mathbf{h r}(\mathbf{s}) 2$. IV flow rate is $150 / \mathrm{ml}$. For how long will it infuse if IV bag contains 1000 ml ?
hr(s) 3 . IV flow rate is $300 / \mathrm{ml}$. For how long will it infuse if IV bag contains 1500 ml ?
hr(s) 4 . IV flow rate is $100 / \mathrm{ml}$. For how long will it infuse if IV bag contains 450 ml ?
hr(s) 5 . IV flow rate is $50 / \mathrm{ml}$. For how long will it infuse if IV bag contains 300 ml ?
$\mathbf{h r}(\mathbf{s}) 6$. IV flow rate is $75 / \mathrm{ml}$. For how long will it infuse if IV bag contains 1000 ml ?
\qquad
___hr(s) 7. IV flow rate is $90 / \mathrm{ml}$. For how long will it infuse if IV bag contains 800 ml ?
$\mathbf{h r}(\mathbf{s}) 8$. IV flow rate is $45 / \mathrm{ml}$. For how long will it infuse if IV bag contains 500 ml ?
hr(s) 9. IV flow rate is $10 / \mathrm{ml}$. For how long will it infuse if IV bag contains 230 ml ?
hr(s) 10. IV flow rate is $30 / \mathrm{ml}$. For how long will it infuse if IV bag contains 1000 ml?
__hr(s) 11. IV flow rate is $85 / \mathrm{ml}$. For how long will it infuse if IV bag contains 600 ml ?

5. Fluid Maintenance Requirements:

REFER TO THE HANDOUT

Use this space to show your solution/s. >>>
ml 1. An infant weighs 5 kg . What is the required amount of Fluid per day?
$\mathbf{m l} 2$. An adult weighs 70 kg . What is the required amount of Fluid per day?
ml 3. A teenager weighs 45 kg . What is the required amount of Fluid per day?
ml 4 . An infant weighs 6 kg . What is the required amount of Fluid per day?
$\mathbf{m l} 5$. A female weighs 50 kg . What is the required amount of Fluid per day?
ml 6 . An infant weighs 3 kg . What is the required amount of Fluid per day?
ml 7 . A toddler weighs 7 kg . What is the required amount of Fluid per day?
$\mathbf{m l} 8$. An adult weighs 95 kg . What is the required amount of Fluid per day?
ml 9. An adult weighs 105 kg . What is the required amount of Fluid per day?
ml 10. A male adult weighs 115 kg .
What is the required amount of Fluid per day?
ml 11 . An infant weighs 2 kg . What is the required amount of Fluid per day?
ml 12. An elderly weighs 65 kg . What is the required amount of Fluid per day?
$\mathbf{m l} 13$. An elderly weighs 35 kg . What is the required amount of Fluid per day?
ml 14 . An infant weighs 2.5 kg . What is the required amount of Fluid per day?
$\mathbf{m l} 15$. An adult female weighs 85 kg . What is the required amount of Fluid per day?

